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Introduction 
 

We use questionnaires to gather information about phenomena of interest. In educational 

research we might be asking questions about how students interact with faculty, or how satisfied 

they are with college, or what kind of values they hold. In many cases this is how we who do 

survey design start thinking about what we want to know, with broad questions that embrace 

concepts that are multifaceted.  But, we cannot ask students “how do you interact with faculty,” 

because the question is too vague and also too broad, and we may not find out the full range of 

interactions students have with faculty.  Thus, in order to learn about student and faculty 

interaction, and provide more context to students who are completing our questionnaires, we ask 

questions about different types of interactions that are important (e.g., conducting research with 

faculty), skipping those that are less important (e.g., passing a faculty member in the hallway 

without saying anything).  This process provides us with a bank of items that cover what we 

believe are the important aspects of student-faculty interaction; taken together, the items can tell 

us about the state of student and faculty interaction generally.  

There are several points that are important here. One is that the reason that we ask all of 

these detailed questions is not only to gather information about specific behavior, but also to get 

at the more elusive concept underlying the questions, often referred to as a latent trait.  In 

combination, a set of items can provide a fuller understanding about an underlying latent trait 

than can any item individually.  There are many different ways to combine survey items, and 

while all methods of data reduction are intended to help organize the information from survey 

items into smaller more useful chunks, just exactly which method we use is important.  Each data 

reduction method has different implications in terms of how valuable the final combined piece of 

information is for its intended purposes.  
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Researchers using CIRP data have for decades used data reduction techniques to make 

sense of survey data, most often using techniques that fall under the rubric of Classical Test 

Theory (CTT). Much of the knowledge of the factors (what we term constructs) that these 

researchers developed, however, has stayed in professional journals, and has seldom made it into 

practice at the institutional level. Furthermore, most constructs were created individually by 

researchers on an ad-hoc basis, and there was no standardization across surveys or data sets in 

terms of which items were included in which constructs. We felt that colleges and universities 

that have CIRP data would benefit from the creation of a set of standard measures that are 

constant across survey instruments and across survey years. Not only would these measures help 

institutions to assess important latent traits among their students, but they would also help to 

reduce and organize the available information contained in each of our surveys.  

We at CIRP embarked on a project, therefore, to organize and evaluate all of the latent 

traits that have been assessed using CIRP data, and to create a set of statistically sound, 

educationally relevant constructs to be used by institutions and researchers alike. The first part of 

this project was an exhaustive literature review of all of the research studies that have used CIRP 

data to generate measures of latent traits (constructs). While many constructs had been created 

over the years, covering many topical areas, we discovered that there were no universal “core” 

set of measures that were available to use. Each researcher created their own constructs 

specifically crafted to the dataset and population being studied. The second part of the project 

was an investigation into what are the best, most modern statistical methods for combining items 

into measures of the underlying latent traits of interest in our surveys. The result of this 

investigation was a decision to use Item Response Theory (IRT) rather than Classical Test 

Theory (CTT) to develop the constructs. Once these two questions were answered, we went 
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about creating a set of well-defined and well-measured constructs that are to be provided in each 

CIRP database. These constructs are designed to be used both locally, at an institution, for 

internal assessment, as well as more broadly, by researchers using the aggregate national data.  

Thus the goal of this project was to end up with a set of CIRP Constructs in each of the CIRP 

survey databases that could help guide research and our understanding of the college experience. 

This technical paper describes the second part of the process that we went though in creating the 

CIRP Constructs.  

This report begins with a discussion of Classical Test Theory (CTT) and Item Response 

Theory (IRT), and then reviews the methods we used to create the CIRP Constructs.  This review 

uses information on how we build the Student-Faculty Interaction  Construct on the Your First 

College Year Survey (YFCY) as an IRT methods example.  This report concludes with an 

appendix which includes detailed information about each of the CIRP Constructs, including 

construct definitions, survey items, and scoring parameters.  In addition, we offer on our website 

answers to frequently asked questions about the Constructs that are beyond the scope of this 

technical report. 
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Classical Test Theory and Item Response Theory 

Classical Test Theory (CTT) and Item Response Theory (IRT) are the two primary 

measurement theories that researchers employ to construct measures of latent traits. Because 

latent traits are by their very nature unobservable, researchers must measure them indirectly 

through a test, task, or survey. The reason unobservable traits can be accessed in such a way is 

that the traits are assumed to influence the way that people respond to test or survey questions. A 

variety of items are needed to measure a single latent trait, because one individual question 

cannot tell a researcher much more than what was asked. For example, if a survey item asks a 

student how often he or she “analyzed the basic elements of an idea, experience, or theory,” then 

the response to that item would tell the researcher just that: how often a student believes he or 

she analyzed the basic elements of an idea. If what a researcher really wants to measure is the 

“higher-order thinking activities” of a student, however, then the researcher would need to ask 

additional questions, such as how often the student “made judgments about the value of 

information, arguments or methods,” “applied theories or concepts to practical problems in new 

situations,” and “synthesized and organized ideas, information, or experiences into new, more 

complex interpretations and relationships.” The researcher could combine then the responses to 

all these questions into a scale representing the larger construct (c.f. Pascarella, Cruce, Umbach, 

Wolniak, Kuh, Carini, Hayek, Gonyea & Zhao, 2006). 

No perfect measure of a latent variable can ever exist. By examining how a person 

responds to a set of items relating to a single underlying dimension, however, researchers can 

create scores that approximate a person’s “level” of the latent trait. CTT and IRT are both tools 

that can be used to do this, but beyond their similar purpose the two measurement systems are 

quite dissimilar. CTT and IRT differ significantly in their modeling processes and they make 
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fundamentally different assumptions about the nature of the construct being measured as well as 

about how individuals respond to test items. A more in-depth treatment of CTT can be found in 

Lord and Novack (1968) or Allen and Yen (1979/2002), and more detail about IRT can be found 

in Embretson and Reise (2000). Below, a very basic outline of each theory is sketched in order to 

compare the two as they relate to the measurement of constructs covering the college experience.  

Perhaps the most fundamental assumption of CTT is that a respondent’s observed score 

on a scale or test represents his or her “true” score plus random error. The true score is a 

theoretical construct defined as “the mean of the theoretical distribution of…scores that would be 

found in repeated independent testings of the same person with the same test” (Allen & Yen, 

1979/2002, p. 57). Error consists of random, unsystematic deviations from true score that occur 

in each testing occasion. Because error is random, it varies in every test administration, and as a 

consequence, observed score does also. True score, by contrast, is theoretically the same 

regardless of testing occasion. This does not mean, however, that a person’s true score is “true” 

for every test or measure of the same construct—it is simply “true” for that person taking one 

specific test. That is, true scores are tied to a specific set of items as opposed to a “real” latent 

trait. If two tests of math ability have different questions and/or a different number of items, and 

Joe, who has some constant latent level of math ability, took both tests, he would have a different 

“true” score for each test because of the different forms. CTT estimates of traits, then, are test-

dependent, and every test or scale has different psychometric properties. 

The fundamental assumption underlying IRT is that every respondent has some “true” 

location on a continuous latent dimension (often called “theta,” or θ). This location theta is 

assumed to probabilistically influence a person’s responses to any item or set of items on a 

survey or test that covers the trait that theta represents. IRT models theta by using mathematical 
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equations that relate response patterns to a set of items, the psychometric properties of these 

items, and knowledge of how item properties influence responses (for more details see 

Embretson & Reise, 2000). Embretson and Reise (2000) describe IRT as being “akin to clinical 

inference” (p. 54); IRT provides a ‘diagnosis’ (trait estimate) for a person based on observed 

‘symptoms’ (response patterns) and background knowledge (a mathematical model). There are a 

variety of different IRT models that can be used to explain how items influence response 

behavior and how best to estimate theta; the choice of these depends on the nature of the data to 

be analyzed. 

There are several differences between CTT and IRT that are important for researchers 

measuring the impact of the college experience using scales from student surveys. First, in CTT 

a person’s “true score” is entirely dependent on a particular set of items because the true score is 

defined in relation to a specific test or scale. In IRT, a person’s “true score” is entirely 

independent of items because the underlying dimension of interest is only assumed to 

influence—it is not defined by—responses to specific items. Second, IRT explicitly models the 

relationship between person properties and item properties with the same model, while CTT does 

not. This means that score interpretation in IRT can be more interesting and flexible. For 

example, specific item responses can be directly compared to student’s trait estimates in IRT, so 

what it means to be “high” in involvement, for instance, can be defined by specific activities. In 

CTT, scores can only be compared to other scores, so to interpret a score (is a score of 50 high or 

low?) reference must be made to a norm group (i.e. how many people scored above 50?). Third, 

the standard error of measurement (SEM) is treated differently in CTT and IRT. Because of 

assumptions made about measurement error in CTT (i.e. that it is normally distributed within 

persons and homogeneously distributed across persons), a test or scale’s reliability and SEM are 
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estimated as a constant for all test-takers (Allen & Yen, 1979/2002). IRT, by contrast, allows for 

the possibility of different scale SEMs for different values of theta, and allows items to 

differentially affect SEM depending on how they relate to theta. The latter is a more flexible 

approach and likely more realistically approximates how people respond to tests and surveys. It 

also allows researchers to construct scales that maximally differentiate people from one another, 

either across the entire theta continuum or on some critical area of the continuum. Finally, a 

consequence of all of the above is that CTT scale scores and their interpretation are always 

context specific; in particular, they are item- and sample-specific. In IRT, the reverse is the case: 

item parameters are independent of sample characteristics, and theta estimates are independent of 

specific items. Given the selection of an appropriate IRT model, responses from any set of 

relevant (calibrated) items can be used to estimate a person’s theta.  
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Methods  

 
Each CIRP construct was created using the same general process. Below we describe the 

steps taken to develop each construct, and then illustrate the process using the Student-Faculty 

Interac tion  Construct from the YFCY. 

Step 1: Item Selection and Assumption Checking 

Initial Item Pool. Before any statistical analyses could be run, a pool of survey items that 

covered the relevant area of interest had to be identified. The selection of initial item pools for all 

of our constructs was guided by previous work from CIRP researchers as well as Astin’s 

involvement theory (1984/1999), which defines college student involvement as “the investment 

of physical and psychological energy in various objects” on campus, which “may be highly 

generalized (the student experience) or highly specific (preparing for a chemistry examination)” 

(p. 519).  

Exploratory factor analyses for item selection and assumption checking. The items in 

the initial pools were next evaluated via exploratory factor analysis to determine each item’s 

fitness as an indicator of the construct of interest. The goal of factor analysis in this context is to 

determine whether the variance shared by a set of items can be explained by a reduced number of 

latent variables (factors). Specifically, in evaluating our initial item pools we were interested 

whether the interrelationships between the proposed variables in each scale could be best 

explained by one and only one underlying factor (Clark & Watson, 1995; Cortina, 1993; 

Gardner, 1995; Reise, Waller & Comrey, 2000; Russell, 2002). Note that due to the ordinal 

nature of item responses on the CIRP surveys, we used polychoric correlations for all relevant 

analyses in the place of the more traditional but less appropriate Pearson correlations (for more 

information see Dolan, 1994; Jöreskog & Sorbom, 1989; Olsson, 1979). All polychoric 
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correlations were computed using the software R 2.9.0 (R Development Core Team, 2009) and 

the maximum likelihood estimation algorithm in the polycor package (Fox, 2009). R was also 

used, along with Reville’s psych library (2009), to conduct exploratory factor analyses. 

Following Russell (2002)’s recommendations, these exploratory analyses employed principal 

axis factoring with promax rotation (an oblique rotation).  

The exploratory factor analyses performed for item selection was one of the most critical 

steps of the construct development process. Not only did the analyses result in the final selection 

of items for each construct, but they also constituted checks for some of the most fundamental 

assumptions of IRT. Two major assumptions underlie the estimation of appropriate item 

parameters in IRT: (1) local independence and (2) unidimensionality (actually, the assumption is 

“appropriate” dimensionality; here we are interested in only one dimension so we focus on 

unidimensionality; for more details see Embretson & Reise, 2000). The assumption of local 

independence dictates that the interrelationships among items in a scale be due only to the fact 

that they tap into the same underlying trait of interest. That is, local independence will be 

obtained if responses to the items in a scale are unrelated (independent of one another) once the 

underlying trait is controlled for. The assumption of unidimensionality is closely related to local 

independence, and in fact it will be satisfied if the local independence assumption is satisfied 

based on a single factor solution. Unidimesionality means that a single latent trait underlies the 

probability of responses to all items in a scale. When unidimensionality is met, score estimates 

will be “unambiguous indicators of a single construct” (Embretson & Reise, 2000, p. 227); when 

it is violated scores will reflect the influence of two or more dimensions. 

During the process of performing the exploratory factor analyses we took several 

indicators into consideration to ensure local independence and unidimensionality. Specifically, 
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for each scale we: a) examined several different factor solutions (one factor, two, three, etc.) to 

ensure that the one-factor solution was most appropriate for the collection of items; b) created 

and inspected a Scree plot of the eigenvalues for each group of items to visually confirm that the 

data dictated a one-factor solution (Cattell, 1966); and c) compared a model-reproduced 

correlation matrix based on a one-factor solution to the observed correlation matrix to ensure that 

the resulting residual correlation matrix was composed of residuals that are small (< .10) and 

clustered around zero. If the differences between the single-factor model-reproduced correlations 

and the observed correlations are small and are clustered closely around zero, it can be said that 

the single factor solution is appropriate (McDonald, 1982; Reise, Waller & Comrey, 2000; 

Tabachnick & Fidell, 2007). The process of examining these indicators was iterative, for we 

were interested in reducing the initial hypothesized set of items to a group that met all of the 

conditions specified above. We first performed the exploratory factor analyses on every item in 

the initial item pool for each construct. If anomalies were found, that is, if a one-factor solution 

was not the most appropriate for the entire set of items, single items were removed one by one 

until a satisfactory solution could be obtained. An example of how this was done can be found in 

the “Example” section below. 

Step 2: Parameter Estimation 

Graded Response Model. Because the items in the all of CIRP’s constructs are coded 

into ordinal categories, scored on Likert scales, the appropriate IRT model to use is Samejima’s 

(1969) graded response model (GRM) (Embretson & Reise, 2000; Ostini & Nering, 2006). We 

applied the GRM model to our data using MULTILOG 7  (Thissen, Chen, & Bock, 2002). The 

process of estimating parameters in the GRM is too complex to describe here, but excellent 

treatments can be found in Embretson & Reise (2000) and Ostini & Nering (2006). What is 
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important to note is the two types of parameters that result from applying the GRM. First, each 

item (i) has a discrimination or “slope” parameter, represented by αi, which provides an indicator 

of how well an item taps into construct of interest. Items that have higher discriminations (α’s) 

provide more information about the trait; in many respects these parameters are similar to factor 

loadings or item-total correlations. Discrimination parameters above 1.70 are considered very 

high, those between 1.35 and 1.70 are high, and those between .65 and 1.34 are moderate (Baker, 

2001).1  

Each item also has a series of threshold parameters associated with it. The number of 

threshold parameters for an item is equal to the number of item response categories minus one 

(k-1); the thresholds are here represented as βi,1, βi,2…βi,k-1. The threshold parameters (β’s) are 

given on the same metric as the underlying trait (θ), which for model identification purposes is 

assumed to have a standard normal distribution with a mean of 0 and a standard deviation of 1 

(Embretson & Reise, 2000). Threshold parameters can be interpreted as the points on the latent 

trait continuum (e.g. the “level” of the trait) at which a respondent has a 50% probability of 

responding to an item in a certain response category or above and a 50% of responding in any 

other lower category (Embretson & Reise, 2000). For example, if a three-category item i, such as 

one that has response options of never, occasionally and frequently, has a βi,1 of -2.0 and a βi,2 of 

0.0, this means that the model predicts that a respondent with a level of the relevant latent trait 

two standard deviations below the mean (θ = -2.0) has a 50% chance of responding in the first 

category (never) and a 50% chance of responding in the second or third category 

                                                            
1 Note that these numbers assume that the α’s were estimated using a logistic function that does not include a D = 
1.7 constant in the numerator of the equation. The inclusion or exclusion of this constant is unimportant in terms of 
the discussion in this paper, as it has to do with equating normal ogive functions and logistic functions and does not 
affect the parameter estimation procedure.  However,  it does affect parameter interpretation.  Specifically, when a 
model that estimates item parameters does not include the D= 1.7 constant, the α’s that are estimated are higher by a 
magnitude of 1.7 as compared to those estimated by a model that includes the constant.  See Embretson & Reise, 
2000 and Ostini & Nering, 2006 for more details. 
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(occasionally/frequently), while a respondent with a latent trait level at the mean (θ = 0.0) has a 

50% chance of responding in the first or second category (never/occasionally) and a 50% chance 

of responding in the third category (frequently). Respondents who fall below -2.0 on the latent 

trait level are most likely to respond “never,” those between -2.0 and 0.0 are most likely to 

respond “occasionally,” and those above 0.0 are most likely to respond “frequently.” The amount 

of information an item provides about any given area of the latent trait depend on the value of the 

βi,k-1’s and on how clustered or spread out they are. 

Reference Population used for parameter estimation. All of the parameters were 

estimated using actual CIRP data from either 2008 or 2009. Data from 2008 were used for 

almost all constructs except for those that contained items not included on the surveys in 2008; in 

this situation 2009 data were used instead. When a construct was being developed only for one 

survey (e.g., just the TFS, YFCY or CSS), we used all the data from that year to perform 

parameter estimation. When we planned to create a construct that spanned more than one survey 

instrument, we created a dataset composed of equal numbers of students from each of the 

relevant survey databases. Typically this involved combining all YFCY and/or CSS cases with a 

random sample of TFS cases equal to the number of YFCY/CSS cases. Estimating the 

parameters in this way ensured that constructs would be able to be compared on the same metric 

across survey instruments and populations.  

Final Parameters. The final parameters for all of the CIRP Construct items are listed in 

the Appendix of this report. 

Step 3: Scoring 

MULTILOG Scoring. Using the parameters estimated for each construct, MULTILOG 

was again used to score students on each construct. Scoring in IRT is an iterative process that 
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finds the most likely trait level for a student, given the responses he or she gave to the set of 

questions that define a construct. Embretson and Reise (2000) explain score estimates as follows: 

“for every position on the latent-trait continuum, from positive to negative infinity, a likelihood 

value can be computed for a particular item response pattern…another way of phrasing this is to 

ask, given the examinee’s pattern of…responses to a set of items, with assumed known item 

parameter values, what is the examinee’s most likely position on the latent-trait continuum?” (p. 

159). Due to problems with estimating scores for respondents who respond all in the highest or 

lowest categories, MULTILOG incorporates a prior distribution for the latent trait into the score 

estimating process (the process is called Maximum A Posteriori Scoring, or MAP). In IRT the 

metric of this prior latent distribution is arbitrary; MULTILOG sets it as a standard normal, with 

a mean of 0 and a standard deviation of 1 (Thissen, Chen, & Bock, 2002). Therefore the scores 

assigned to each response pattern/respondent are also given on this distribution. 

Rescaled Scores. Students’ scores were initially given on a “z-score” metric. Although 

statisticians often work in standardized z scores, these scores are not always the most ideal for 

interpretative purposes given the decimals in such scores as well as the negative scores for half 

the population. Therefore, before merging students’ scores with their CIRP data, we rescaled all 

students’ scores to be on a mean of approximately 50 with a standard deviation of approximately 

10. This was done by multiplying each score by 10 and adding 50. These are the final scores that 

are appended to each CIRP data set and that are provided in our newly revamped reports. 

Score Categories. The CIRP reports also describe the constructs using a three-category 

variable, labeled “low,” “medium,” and “high.” This variable is created by recoding the original, 

continuous scores according to their observed distributions (means and standard deviations). 

Students with scores of 0.5 standard deviations above the mean or higher are coded into the 
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“high” category; students with scores within 0.5 standard deviations of the mean are coded into 

the “medium” category; and students with scores of 0.5 standard deviations below the mean or 

lower are coded into the “low” category. 

Example of the construct creation and scoring process: First-Year Faculty-Student 
Interaction (YFCY) 
 
Step 1: Item Selection and Assumption Checking 

Initial Item Pool. In the example here, first-year faculty involvement was conceptualized 

as a combination of the quantity and quality of faculty-student interaction. The construct 

specifically measures the amount and type of faculty contact that students have during their first 

year of college, as well as satisfaction with these issues. Table 1 below lists all of the items from 

Table 1 
All 2008 YFCY Items Relating to Faculty Involvement  

Scale/Item  Response Options 
Since en tering this co lle ge, how often have you 

interacted [by phone, e-mail, Instant Messenger, or in 

person ]  w ith  …Faculty outside of class or office hours

Daily, 2 or 3 times per week, once a 
week, 1 or 2 times per month, 1 or 2 
times per term, Never 

Since en tering this co lle ge, how often have you 

interacted [by phone, e-mail, Instant Messenger, or in 

person ]  w ith  …Faculty during office hours 

 

Since entering this co llege, how often have 

you …Asked a professor for advice after class 
Frequently, Occasionally, Not at all 

Since en tering this co lle ge, how often have you  
received fro m  your professor …advice or guidance 
about your educational program 

 

Since en tering this co lle ge, how often have you  
received fro m  your professor …emotional support or 
encouragement 

 

Since entering this college, have you… communicated 
regularly with your professors 

Yes (2) , No (0) 

Please ra te your satisfa c tion with th is ins titution  [ in 

terms of the ] ... Amount of contact with faculty 

Very Satisfied (5), Satisfied (4), 
Neutral (3), Dissatisfied (2), Very 
Dissatisfied (1), Can't Rate/ No 
Experience (missing) 

Since en tering this co lle ge , how much time have you 

spent during  a typica l we ek …talking with professors 
outside of class 

None, Less than 1 hour, 1-2, 3-5, 6-10, 
11-15, 16-20, Over 20 
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the 2008 YFCY that were related to faculty involvement.  

Exploratory factor analyses for item selection. Initial exploratory factor analyses were 

run on the full set of faculty involvement variables listed above. Based on the results of these 

analyses, three items were removed from the faculty involvement item pool. The first item to be 

removed from the item pool was the question asking about the number of hours per week 

students typically spent talking with faculty outside of class. This was removed because it was 

deemed to be essentially the same question as several of the others—specifically, it conceptually 

overlapped too much with frequency of interacting with faculty during office hours, frequency of 

interaction outside of class or office hours, frequency of asking a professor for advice after class, 

and communicating regularly with professors.  

Next, the variable representing the frequency with which students received from 

professors emotional support or encouragement was removed. The reason this variable was 

dropped was due to what is called a “local dependence”—a violation of one of the assumptions 

of IRT. Specifically, the “professors provide emotional support or encouragement” variable had 

an extremely high correlation with the “professors provide advice or guidance about educational 

program” variable (r = .65), and this correlation was unexplained by a factor model assuming 

only one underlying latent trait (unexplained (residual) correlation based on a one factor solution 

= .22). Therefore, one of the variables had to be removed to avoid violating the local 

independence assumption of IRT. We kept the advice about educational program variable instead 

of the emotional support variable because we deemed the former type of faculty support more 

directly related to the types of interaction we expected between students and faculty in the first 

year of college. 

Finally, the variable asking about the frequency with which students interacted with 
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faculty during office hours was recoded into a dichotomous variable representing whether 

students ever went to office hours. The variable was coded this way because we desired to keep a 

measure of going to office hours in the overall construct, but the full variable could not be 

included due to, again, a local independence violation between it and the variable “How often in 

the past year did you interact with faculty outside of office hours?” (The correlation between the 

original two variables was .55 and the unexplained correlation based on a one-factor solution 

was .22; the correlation between the “office hours yes/no” variable and the interaction with 

faculty outside of office hours variable was .38 and the unexplained correlation was .07). Table 2 

below shows the final items in the faculty involvement scale and the polychoric correlations 

between them. 

Table 2 
Polychoric correlations between final faculty involvement items  
  1 2 3 4 5 6 
1 Freq: Interact with faculty outside class/office hours 1.00      
2 Frequency: Asked a professor for advice after class 0.39 1.00     
3 Yes/No: Communicate regularly with your professors 0.46 0.53 1.00    
4 Satisfaction: Amount of contact with faculty 0.31 0.33 0.51 1.00   
5 Freq: Prof. provide advice about educational program 0.33 0.47 0.51 0.41 1.00  
6 Yes/No: Ever go to office hours 0.38 0.39 0.41 0.24 0.31 1.00

 

Assumption Checking. Table 3 shows the single factor solution for the faculty 

involvement item set. From this information we can begin to make a case that the faculty 

involvement items are unidimensional and do not violate the assumptions of IRT. Supporting a 

one factor solution as most appropriate, all factor loadings for the faculty involvement variables 

are quite high, ranging from .53 to .80. In addition, the ratio of the first to second eigenvalue is 

3.69, a high ratio; this fact, combined with the fact that all but the first eigenvalues are quite 

small (and relatively similar in size), provide evidence that a one-factor solution is most 

appropriate (Hutten, 1980; Lord, 1980). Visually supporting the examination of eigenvalues, the 
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Scree plot in Figure 1 demonstrates an unmistakable “bend” or “elbow” with only one point 

above the elbow; this again suggests that a one-factor solution is most appropriate (Cattell, 

1966).  

Table 3 
Factor Loadings and Eigenvalues For The Items Comprising Faculty Involvement Scales† 

 
 

Factor 
Loading 

Eigen-
values 

Ratio of 1st to 
2nd Eigenvalue 

1 Freq: Interact with faculty outside class/office hours 0.58 1 3.01 3.69 
2 Frequency: Asked a professor for advice after class 0.68 2 0.82  
3 Yes/No: Communicate regularly with your professors 0.80 3 0.66  
4 Satisfaction: Amount of contact with faculty 0.56 4 0.60  
5 Freq: Prof. provide advice about educational program 0.64 5 0.51  
6 Yes/No: Ever go to office hours 0.53 6 0.40  

†Extraction Method: Principal Axis Factoring, promax rotation; Polychoric correlation matrices used for 
analyses 

 

Figure 1: Scree plot for faculty involvement items*
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*As computed from polychoric correlation matrix, see Table 2 

Table 4 shows the residual correlation matrix created by subtracting the observed 

correlation matrix from the model-reproduced correlation matrix. Additional evidence supporting 

a one-factor (unidimensional) solution for the faculty involvement items is found in this table, as 

it demonstrates that a one-factor solution reproduced the observed correlations among the items 

well. After subtracting the reproduced from the observed correlations, the residuals among the 

faculty involvement items had a mean of .001 and a variance of .001. Further, most residual 
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correlations had absolute values less than .05, and none exceeded .07. These results not only 

argue for unidimensionality but also, as discussed above, provide evidence of “local 

independence,” which is a critical assumption of IRT.  

Table 4 
Residual correlation matrix created (observed correlation matrix minus model-reproduced correlation 
matrix based on factor solution shown in Table 3) 
  1 2 3 4 5 6 
1 Freq: Interact with faculty outside class/office hours 0.00      
2 Frequency: Asked a professor for advice after class 0.00 0.00     
3 Yes/No: Communicate regularly with your professors -0.01 -0.01 0.00    
4 Satisfaction: Amount of contact with faculty -0.01 -0.05 0.06 0.00   
5 Freq: Prof. provide advice about educational program -0.04 0.03 -0.01 0.05 0.00  
6 Yes/No: Ever go to office hours 0.07 0.03 -0.02 -0.05 -0.02 0.00 

 

Step 2: Parameter Estimation 

The parameters estimated by MULTILOG for the Faculty Involvement items are listed in 

Table 5.  

Table 5 
 IRT parameters for faculty involvement items 
YFC A B1 B2 B3 B4 B5 
Freq: Interact with faculty outside class/office hours 1.18 -1.17 0.16 1.19 2.21 3.60
Frequency: Asked a professor for advice after class 1.74 -1.21 1.36    
Yes/No: Communicate regularly with your professors 2.71 -0.90 1.10    
Satisfaction: Amount of contact with faculty* 1.20 -4.34 -2.76 -0.76 1.59  
Freq: Prof. provide advice about educational program 1.69 -0.87 1.48    
Yes/No: Ever go to office hours** 1.29 -2.24     
* “Can’t rate” option coded as missing; ** Recoded from frequency of going to office hours 

 

Step 3: Scoring 

Original Score and Rescaled Score. Using the parameters in Table 5 and MULTILOG’s 

scoring algorithm, each student in the 2008 YFCY dataset who answered at least one of the 

questions in the item pool was given a construct score for faculty interaction. The scores as 

obtained from MULTILOG ranged from -2.01 to 2.30, with a mean of 0.07 and a standard 
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deviation of 0.82. We rescaled the scores by multiplying each by 10 and adding 50, resulting in 

final score estimates that had a mean of 50.7 and a standard deviation of 8.2. See table 6 for a 

comparison of original and rescaled scores. 

Table 6 
Faculty Interaction Construct Scores 

  Original Scale Rescaled*
Valid 41047 41047 N 
Missing 70 70 

Mean 0.07 50.68 
Median 0.12 51.21 
Std. Deviation 0.82 8.21 
Minimum -2.01 29.88 
Maximum 2.30 72.96 

*Rescaled score = Original Score*10 + 50 
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